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Abstract

Strong Planning and Forecast Horizons for a Model with
Simultaneous Price and Production Decisions

by

G.L. Thompson, S.P. Sethi, and J.T. Teng

In this paper, we have solved a general inventory model with

simultaneous price and production decisions. Both linear and

non-linear (strictly convex) production cost cases are treated.

Upper and lower bounds are imposed on state as well as control

variables. The problem is solved by using the Lagrangian form of

the maximum principle. Strong planning and strong forecast

horizons are obtained. These arise when the state variable

reaches its upper or lower bound. The existence of these horizons

permits the decomposition of the whole problem into a set of

smaller problems, which can be solved separately, and their

solutions put together to form a complete solution to the problem.

Finally, we derive a forward branch and bound algorithm to solve

the problem. the algorithm is illustrated with a simple example.
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1. Introduction

Many methods have been developed to solve the problem of

production scheduling over future periods of time in order to

satisfy the given amounts required of a certain commodity in each

of these periods. Such methods are based on a wide range of

production-inventory models--from elementary deterministic ones to

sophisticated stochastic models with time-varying parameters.

Historically, applications of optimization methods to production

and inventory problems date back at least to the classical EOQ

model and the lot size formula. The EOQ model is essentially a

static model in the sense that it assumes the demand to be

constant and only a stationary solution is sought. A dynamic

version of the lot size model in which the assumption of a

steady-state demand rate was dropped was analyzed by Wagner and

Whitin [131. The solution methodology used there was dynamic

programming.

In some dynamic problems it is possible to show that the

optimal decisions made during an initial positive time interval

are either partially or wholly independent of the data from some

future time onwards. In such cases, a forecast of the future data

needs to be made only as far as that time to make optimal

decisions in the initial time interval. The intial time interval

is called the planning horizon and the time up to which data is

required to make the optimal decisions during the planning horizon

is called the forecast horizon. Whenever they exist, these

horizons naturally decompose the problem into a series of smaller

problems.
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If the optimal decisions during the planning horison are

completely independent of the data beyond the forecast forizon,

then the former is called a strong planning horizon and the latter

is called a strong forecast horizon. If, on the other hand, some

mild restrictions on the data after the forecast horizon are

required in order that to keep the optimal decisions during the

planning horizon unaffected. then it is called a weak forecast

horizon, and the corresponding planning horizon is called week

planning horizon. For example, Modigliani and Hohn [5] show that
*

a planning horizon [O,t I in their production planning model, the

corresponding strong forecast horizon is always the overall

horizon [0,T], but the information required on [t ,T] is just the

accumulated demand rather than the complete demand schedule for

each instant of time in that interval. In the case, the weak

planning horizon and the weak forecast horizon are identical. Of

course, a weak planning horizon does not reduce the interval over

which forecasts are needed, but reduces the informational

requirement within this interval.

Earlier planning horizon results for production planning,

obtained by using dynamic programming and variational arguments,

have been given by Kunreuther and Morton [2,3], Modigliani and

* Hohn [5), and Wagner and Whitin (13). Other horizon results,

derived by using optimal control theory, were given by Kleindorfer

and Lieber [1], Lieber [4), Morton [6), Pekelman [7,8), Teng,

Thompson, and Sethi [10), and Vanthienen [12).

In this paper, the problem of determining simultaneously the

price and production schedule of a firm over a finite horizon T is

!C-
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solved for a given time dependent demand function. Both linear

and non-linear (strictly convex) production cost cases are

treated. Upper and lower bounds are imposed on state as well as

control variables. The problem is solved by using the Lagrangian

form of the maximum principle. Strong pla.ning and strong

forecast horizons are obtained. These arise when the state

variable reaches its upper or lower bound. The existence of these

horizons permits the decomposition of the whole problem into a set

of smaller problems, which can be solved separately, and their

solutions put together to form a complete solution to the problem.

Finally, we derive a forward branch and bound algorithm to solve

the linear case. The forward algorithm for the convex case is

similar.

2. The Linear Production Cost Case

In this section, we will find the optimal price p (t) and

production rate u*(t) of a monopolist who faces a differentiable

demand curve on the interval [O.T]. Suppose the demand curve is

D(t) = a(t)-bp(t) and the linear production cost is cu(t), the

linear inventory cost is hI(t), the maximum production rate is i,

and the warehouse constraint is I(t) < W. The resulting problem

is that of maximizing the following expression:

J. f T p(t)[a(t)-bp(t)]-hI(t)-cu(t)}dt (1)

subject to
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[] 1(t) = u(t)-[a(t)-bp(t)], 1(0) 1 0 < W (2)

[Pl ] I(t) > I(t) > 0, [02],(t) < W, ["1u"t) > O,

(3)

U2 ]  u(t) , [nl] p(t) > 0, [r2 ]p(t) < a(t)/b,

where h,c,b,U and W are positive constants and c<a(t)/b for all t.

Note that a(t)/b represents the maximum price, which is required

to exceed the production cost (otherwise, no production will take

place). The function X(t) is the adjoint variable of (2), and

P1 (t), P2 (t), p 1(t), p2 (t), hi(t) and q2(t) are the Lagrange

variables of the corresponding constraints. A dot above a

variable denotes the first derivative with respect to time.

This model is similar to the model due to Pekelman [7] except

that the production cost here is linear, and production and

warehouse upper bound constraints have been added. In Section 3

we consider the same model with convex production cost, which is a

generalization of Pekelman's.

2.1 The Necessary Conditions for an Optimal Solution

The Hamiltonian function of Problem (1) is

H=pa-p2 b-hI-cu-x(u-a+bp) (4)

which is linear in u and quadratic in p so that the optimal

production rate u t) is bang-bang and the optimal price p Ct) is

a sat function. For this problem the Lagrangian is

NOW



LH+l(u-.a~bp)+o (a-bp-u)p IA U+P 2(G-u)+np+n (a/b-p) (5)

The following necessary conditions hold, see [9), for an optimal
solution

~j:O~+)~ 1 .. 2 +'j,-'.2 , or

0 if + -P2<

U {undefined if A+P1- P2 =c(6

a ~~if + -P2c

=. 0Oa-2bp+(X1 +0 1-0 2blin21or

, 0 ~if A+o 1- 0 2-
p =4(a/b+x+P1 -P2 )/2  if -.a/b(X+P01 02 <a/b()

a/b if a/b<x~o I- P2

the adjoint equation satisfies

and the transversality conditions are

xCT)>O and X(T)I(T)=C;()

the complementarity and nonnegativjity conditions are
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P 1IP IP 2 (W-I),P 2 I1 U'A 2 (a.u),Y1 1 p~n 2 (a/b..p):0 10

-and PV, P21 1'I 2' n'' i2>O;

the variable I(t) is continuous, I is continuous except

possibly at an entry time or an exit time to the boundary

jconditions I(t)=0 or I~t)=W, 1+0 l- P2 is continuous everywhere,

and moreover ;10and ;2<0)

Nocte that t.i is an initial or entry time to I(t) =W if I(t.w ) <

W, and I(t~ )=I (t +)=W; tw is a final or exit time to I(t)=W if

I(tf h)E (tfw)=W and I(tf4 )<W. The definition of t 0 and t~. are

similar and are obtained by changing W to 0.

2.2 Optimal Policies fcr Three Possible Cases

There are 3nly three different possible cases for the values

of I(t). We shall discuss the optimal policies in cases 1,2,and 3

below.

Case 1 0<I(t)<W

This implies 01=02 =0' We have two different regimes 1A and

1in this case.

Regime 1A )X(t)<c. From (6) and (7) we have the following

U =0, p =max 0;(a/b+k)/2), 1<0 (12)
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Regime 1B I(t)>c.

U :uand p*=min (a/b; (a/b + 1')/2) (13)

Case 2 I(t)=O and i(t)=O.

This implies P 0 u * a-bp ,and Ca/b+c)/2<p*<a/b. We also

have regimes 2A and 2B in this case.

Regime 2A 5>(a-bc)/2. An application of the maximum

principle gives the following optimal policies;

U * (a-bc)/2, p * Ca/b+c)/2, X+pj~c and

(14)

1 l 2 2 1

Regime 2B 5<(a-bc)/2 and ;<bh. The maximum principle give

'1 the following optimal policies;

U p * p (a-ii)/b, X+P 1 =a-25)/b,

1 1 "2 =0, and P' 2 (a-29-bc)/b>O

Note that if both 5<(a-bc)/2 and a>bh hold then =;~/b-h>O, which

leads to a contradiction to (11).

Case 3 l(t)=W and i(t)=O.
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These conditions imply P1 =0, u :a-bp , and (a/b+c)/2<p <a/b.

We have only one regime 3A in this case.

Regime 3A 5<(a-bc)/2 and a>bh. The maximum principle yields;

u =u, p =(a-5)/b, X-P2=(a-2u)/b, P1=n1 =n2=,

(15)

and l2 =(a-25-bc)/b>O

* *
Note that if 5>(a-bc)/2 then u =(a-bc)/2, p =(a/b+c)/2, and

X-P 2 =c. This implies X-P2 =0 and contradicts the fact that - h.

Similarly, if 5<(a-bc)/2 and a<bh then X-P2=(a-2G)/b, X-P2 =a/b-h

and this again leads to a contradiction. Therefore Regime 3A is

the only case to be considered here.

A simple economic interpretation of Cases 2 and 3 is as

follows. It is easy to prove (proof omitted) that I=O implies

that (a-bc)/2 is the best production rate without considering the

production capacity. Therefore, we can call (a-bc)/2 an ideal

perfect production rate. In Regime 2A, U>(a-bc)/2 means that we

can set the production rate to be the ideal perfect production

rate without violating the production capacity. Thus, we don't

need to build up inventory for the future, i.e., Keeping the

warehouse empty is our optimal strategy. In Regime 2B, 5<(a-bc)/2

implies that the production rate couldn't reach to the ideal

perfect production rate because of a lower production capicity.

However, a<bh hints that the rate of price increase, ;/b, is not
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greater than the marginal inventory ccst, h. Therefore, it does

not pay to build up inventory. Similarly, in Regime 3A the

production capacity is less than the ideal perfect production rate

and the rate of price increase is greater than or equal to the

marginal inventory cost. Thus, it pays to build up inventory.

2.3 Theoretical Results

Let us investigate the behavior of I(t). First, we shall

establish a sufficiently large initial inventory I0 such that
-0

I010 implies u =0 for all t. From Regime 1A, and Equation (9) we

know

I0:l [a-bmax{O; [a/b+h(t-T)]/2}ldt (17)

The inventory i0 is just sufficient to meet demand when price is

determined by either of the first two rules in (7).

Theorem 1 IO>IO<=>I(T)=1O-10>0, and X(T)=O

<=>u :0 for all t, and p*(T)=a/(2b).

*
Proof. We prove the second implication only. Assume u =0
*

and P (T)=a/(2b). This can occur only in Regime 1A. Thus,

0<1(t)<W, X(t)=h(t-T) for all t, and I(T)=I -I00. The
0 0

verification of the converse is trivial.

Corollary 1 I fYO<=>I(T)=O and X(T)>O



Theorem 2 We can conclude that 1<0 under each of the following

cases:

(ii) 1 0<1 0 and i>(a-bc)/2 for all t

(iii) IO<IO; whenever 9<Ca-bc)/2 we have ;<bh.

Proof. Case Ci) follows from Theorem 1. We now prove cases

(ii) and (iii). Suppose not, i.e., 1(t)>0 in (T, .c); see Figure

1. This can happen only in Regime 1B. Thus, for all tc(-t+c/2,

r.e) we have Xoc, U =U and p =min~a/b; (a/b+X)/2]. Hence

ii if O>a/b (p*=a/b)

Iu-(a-bx.)/2 if )X<a/b Cp * =a/b.X)/2)

In Case (ii), the conditions, i5>(a-bc)/2 with X(r+c)>c, imply

ui-(a-bA)/2>5-(a-bc)/2>O on C-r+e/2, -'r,). Thus i( ...)>0. By

repeating this argument for the intervale CT.C, -r+20, (-r+2c,

*1 ..3c )....... we see that I(T)>0. This contraditics Corollary 1

* which says I~t)=0 in Case (ii).

In Case (iii), OI= or (bh-;)/2>0. Thus, I(r.e)>0, which, as

above, contradict I(T)=0 for"Case Ciii).
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We now discuss how t in Corollary 2(c) is determined. For

convenience, let us define the function *(t)=(X+)P1-P2 )(t) which is

similar to the 4 function in Pekelman [7). In Regimes 2A and 2B,

we have

c if 5>(a-bc)/2

0{( 0 (18)

(a-2,3)/b if 5<(a-bc)/2 and a<bh

or 0 =max{c; (a-25)/b}. Intervals such that G>(a-bc)/2 or

[i<(a-bc)/2 and ;<bh] are defined to be empty warehouse transitive

intervals on which the boundary condition I(t)=O holds.

Similarly, by using the results in (16) for Regime 3A we have

#w=(a-25)/b (19)

Intervals such that 7<(a-bc)/2 and a>bh are defined to be full

warehouse trasitive intervals on which the boudnary condition

I(t)=W holds.

After defining the function *0, we can use a binary search

program to find the values of X(O) and t1 in Corollary 2(c). By

Corollary 1 we have XO=X(O)>-hTsxo.0 If condition (ii) of Theorem

2 occurs then *O(ti)=c so that Xo<c. If condition (iii) of

Theorem 2 happens the Xo<a(O)/b; otherwise k(t)>a(t)/b (because

X=h>a/b), p(t)=a(t)/b for all t so that I(T)>I 0 and leads to a

contradiction. Thus, o0<a(O)/bx 0 holds in any of the three

conditions of Theorem 2. To find the value of tj, we can first
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guess I(+X)/2. Check Whether X() satisfies the following
0 -00 0

3 equations or not.

X(t1)=X0oht 1 =0(t1) (20)

:(tc)=X 0 htc=c (21)

t tI .

I0 =oC a-bmax[0;(Xo~ht+a/b)/2]dt-$ t1u-[a-bo +ht)J/2}dt (22)

If yes, then we are done. If the right-hand side of (22) is

larger than I 0 then let the new guessing value of X 0 is

0)(1)+) 0 )/2 because I is an increasing function with respect

to X Otherwise, let X 2)=(X1)+*0). Repeating this binary

search procedure we can get the values of t I and X Next, we

shall explore the case in which a>bh, i.e., the case in which it

pays to store inventory.

Lemma 1. If a is continuous and non-decreasing, then the optimal

value of 4 is also continuous and non-decreasing.

Proof. In Regimes 1A and iB, *=X is an increasing continuous

function. In Regimes 2A and 2B, *=*o=max{c;(a-25)/b} is a

non-dec-easing continuous function. Similarly, in Regime 3A

*=* =(a-25)/b has the same properties.w

Corollary 3. If a is continuous and non-decreasing then the

o coptimal controls u and p are both non-decreasing.

B
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Proof. It immediately follows from Lemma 1 and (6), and (7).

0-
Corollary 4. If a is continuous and non-decreasing then u (t )=a

implies u (t)=U for all t>t O .

Proof. Follows immediately from Corollary 3 and the

constraint u<u.

Lemma 2. If a>bh then I(t)=O on any interval (t ,t ) will imply

u *=(a-bc)/2< on (t0 1t1).

Proof. I(t)=0 on (t0,t 1 ) implies this case can happen only

in Regime 2A. Thus, a>(a-bc)/2 and u* =(a-bc)/2< on (tO t I)

From Corollary 4 and Lemma 2, we can easily get the following

result.

0
Corollary 5. If a>bh and u (t )=5 then I(t)>O almost everywhere

on [tO T].

Theorem 3. If a>bh then there exists an optimal solution such

that I(t)>O almost everywhere on [0,T].

Proof. To prove this theorem, we change (6) so that u =u

when A+.P1-P2 2c, which comes by putting together the last two parts

of (6). If u t)=O for all t then we are in Regime 1A so that

I(t)>O almost everywhere on [O,T]. Otherwise, there exists

U (t )=G for some t c[O,T]. Let us define

t ozinf~tlu* (t)=5).
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If t0:0 then the theorem is true by Corollary 5. If t o0 and

there exists an open interval, say (t2,t 3 ) with t 3<t0 , such that

I(t)=O on (t2 ,t3 ); then 0 (t)>c and u (t)=u on (t2 ,t3 ). This
*

contradicts the fact that u (t)=O on (t2 , t3). Thus, I(t)>O

almost everywhere on [O,t 0 1. By Corollary 5, we also have I(t)>O

almost everywhere on [to,T]. This completes the proof.

Theorem 4. If I(t)>O almost everywhere on [0,T], then the optimal
I

control path for u (t) satisfies one of the following three cases:

*
(I) u =0 for all t

I

(II) u =i for all t

(III) u =0 for t~t0 and u =u for t>t 0

Proof. If I(t)>0 almost everywhere on [0,T) then case 2

cannot occur so that there are no jumps in X(t), except in Regime

3A. Regime 3A can occur only following Regime IB; also 1A cannot

follow Regime 1B. Therefore, we have the following three possible

optimal policies:

() Regime 1A, ft. all t. (This implies CI));

(2) Regime 1B at first, then Regime 3A and 1B maybe

alternating several times, at time T the case should be Regime 1B.

(This implies (II));

(3) Regime 1A at first, then Regime IB, after this Regime 3A

and 1B maybe alternating several times, at time T the case should

be Regime 1B. (This implies (III)).

This completes the proof of Theorem 4.

Here, we shall also discuss the situation in which the

exogenous variable a(t) can first go up and then down or first
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down then up. In fact, using the above results we can easily

obtain the following theorems.

Theorem 5. Assume 1 is chosen so that a>bh for t<t and a<bh for

t>t; i.e., it pays to store production before but not after t.

Also assume neither condition i) nor condition (ii) of Theorem 2

holds. Then there exists an optimal solution such that I(t)

satisfies one of the following two cases:

Ci) I(t)>O for all tc[O,T)

(ii) there exists t2> such that I(t)>O on (O,t2 ) and I(t)=O

on [t2 ,T].

Theorem 6. Assume t is chosen so that a<bh for t<t and a>bh for

t>7t. Also assume neither condition (i) nor condition (ii) of

Theorem 2 holds. Then there exists an optimal solution such that

I(t) satisfies one of the following three cases:

(1) I(t)>O for all te[O,T)

(2) there exists t3 1 such taht I(t):O [0,t 3 ] and I(t)>O on

(t3,T).

(3) there exists t4 <ts5 t such that I(t)>O on [O,t 4 ), I(t)=O

on [t4,t 5 ], and I(t)>O on (t5 ,T).

In general, the interval [O,T] will contain many subintervals

which >(a-bc)/2 or ;<bh or a>bh. By repeatedly applying the

results of Corollary 2 and Theorems 3, 5, and 6 we can construct

the solution by piecing together different solutions obtained from

application of these theorems.

-I. I4l I- m . .
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2.4 Planning Horizon Theorem

The optimal decisions (price and production rate) during the

planning period [O,t J can be completely independent of the data

beyond the forecast horizon [O,t with t*<t**. That is, no

information after t is required for making optimal decisions on
t* *

[0,t ]. We therefore call t to be a strong planning horizon and

t to be a strong forecast horizon.

In this section, we will explore the strong planning and

forecast horizons for the problem.

IJ
Lemma 3 Assume we have the optimal trajectory such that t* and

t** are the two consecutive entry times at which inventory hits

the boundary contraint. Furthermore, let I(t )=O and I(t )=W, or

I(t )=W and I(t )=O. Suppose that t <t Then t is a strong
**

horizon, and t is a strong forecast horizon.
,

Proof. We may assume, without loss of generality, that t is

the first time to enter the boundary condition I(t)=O or W. Let

the optimal value of X(O) be X0 to the original problem. Then the

values of t and X0 are decided by the demand in [O,t ], the

production capacity, and the initial inventory as follows.

X o+ht =X(t*-)=*(t*+)=max{c;(a-2G)/b},

O(or W)-Ift0 Idt.

0
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0

If we can prove that A(t)=x +ht on (0,t) is still our optimal

solution to any problem having the same information as the

original problem on [O,t 2 and regardless of its value after t

then we are done. Here, we will prove the case in which I(t*)=W

and I(t *)=O, see Figu. e 2. In fact, using an analogous argument

we can prove the other case in which I(t*)=O and I(t )=W.

I I
0 I,: I= :3< < I O

.....O... .~ :i~ 3...: I

f tiuset t t

Figure 2

If the new optimal value of X(0) were 10 with ) O >XcO, then the new

inventory I should be greater than the original I on [O,t ]

because the higher value of * implies the higher value of I by

using (2), (6), and (7). Thus, there exists a tc(O,t ) such that

I(t)=W. Let tO be the earliest time such that I(t)=W. Then we

have I(t)>O for all tc(t ,t ). Otherwise, let t be the first

time such that I(tl)=O and t C(tt ), see Figure 3 for

illustration. This implies O<I<W and >hz4 because Regimes 2A and

0 1
28 cannot occur on (t t) for I.
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_ _ _ _ I

00

to t" time

Figure 3

Since (t): +htO>X 0ht (t )>h=; on [tO t we have I>I on

0 1
[t , t I and

1 0 tI t - 1 0I(t I)-I (tO) =Itodt<$toIdt=I( t )- (tO) :-W,

cr I(t )=I(t )-W<o, which leads to a contradiction. Thus, I(t)>O

0 * 0 * Z
for all te(t .t ). Again, O<I<W on (t ,t ) implies *>h= and 1>1

0 *
on (t t). Then we have

I(t )-w=f 0 Idt>$t0 idt=W-I(tO)>o,

which again leads to a contradiction to the fact that I(t)<W for

all t. Therefore, we have shown that XO>X 0 cannot be an optimal

solution to the new problem. Next, if the new optimal value of

X(O) were X with ZOO, then the new inventory <I on [O,t so

that I(t*)<W, see Figure 4. Since *=*w on (t ,t ) where t is the

final or exit time of I(t)=W we know a>bh, *<h<*, *<*, I<I, and

I<1 on (t*,tf). Similarly, we can get *<, I<I, and I<W on

Et f t*. This implies

__ __ __I-
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oy' I~Ct*)<0 and leads to a contradiction again.

Figure 14
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Theorem 7. (Strong Planning Horizon Theorem)

Let t* and tf be the entry and exit times to I(t)=W

respectively, i.e., I(t)=W for tc[t ,tf , and I(t*) and I(tf+)<W.

Suppose t is the next entry time to I(t)=O. Then all t before
f **

t are strong planning horizons and all t after t are strong

forecast horizons, i.e. tf is a maximal strong planning horizon

and t is a mimimal strong forecast horizon. The theorem also

holds when 0 and W are interchanged.

Proof. If t is not a strong planning horizon then thereO * f

exists a new optimal solution such that t O(t ,t ) is the new exit

from I(t)=W boundary. The reasons are as follows. If t0 <t* then
*

it contradicts to Lemma 3 that t is a strong planning horizon.

On the other hand, if tO>t f then tf is a strong planning horizon.

Using the same arguments as in Lemma 3 we can prove that the new

exit time t0 will lead to a contradiction.

2.5 A Forward Branch and Bound Algorithm

The solution to (1) is obvious if Io> O  Therefore, we may
0- O-

assume, without loss of generality, that I0<10. In order to find

an upper bound to the optimal objective value of (1) we solve the

following problem:

max J=IT{(p(t)[a(t)-bp(t)]-cu(t)1dt, (23).

subject to

I(t)=u(t)-[a(t)-bp(t)J, I(t)=It (24)

ELM e.
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It is easy to show that the optimal solutions are given by:

* *

P (t)=(*a+bc)/(2b), D (t)=(a-bc)/2

and

t=1 t 2(a 2 b 2 )/(4b)dt-c[$f(a-bc)/2dt-It 
]  (25)

For convenience, we let

J[M,S]:maxf$Cp(a-bp)-hI-cu~dt, subject to constraints (2) and (3).

It is clear that Tt in (25) is an upper bound of J[t,T] because we

do not have inventory cost and production capacity constraint in

problem (23). Next, we shall say that the vertex v. is fathomed if

and only if no further exploration from this vertex can be

profitable. Otherwise, we shall say that vj is unfathomed or

alive. We are now in a position to present the algorithm.

Forward Branch and Bound Algorithm

Step 0 (Initalization) Begin at the live vertex vo, where J=O. Go

to Step 1.

Step 1 (Branching) Assume that t i is the first entry time to the

constraint I(t):W or I(t)=O. Solve the following two cases.

Case 1.1 Suppose that t i is the entry time of I=W. Then t.

should satisfy the following constraints:

k(t-)=[a(ti))-2G]/b if 5<(a-bc)/2 and ;bh at tzt1 (26)
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X(t)=X(t-)+h(t-t) for all t<t (27)

W-I >ft[u-(a-bp)]dt>-I for all t<t. (28)
0 0 0 1

t.
W-I 0 = 0 

[u-(a-bp)]dt (29)

If there exists one or more solutions, then we keep each such
solution as successor vertices of v and go to Case 1.2.

0

Otherwise, there are no solutions for this branch, terminate this

branch and go to Case 1.2.

Case 1.2 Suppose that ti is the entry of I=O. The t.

satisifies the same contraints as in Case 1.1, except that (26)

and (29) must be replaced by (30) and (31), respectively.

c if u (a-bc)/2 at t=t i

(30)

[a(t )-25]/b if 5<(a-bc)/2 and abh at t:t i
i

-0 =f0 t Eu-(a-bp)]dt (31)

Again, we keep all solutions as successor vertices of v., if any,

and go to Step 2.

Step 2 (Update Bound) Check each new live vertex vj. If t(J)=T

and J <J, where t is the last time of vj at which I reaches

to W or 0, and J(J) is the objective value of vi, then the vertex
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v. is fathomed. If t(J:T and JJ>J, then let J:J Go to

Step 3.

Step 3 (Fathoming by Bound) Check each new live vertex vJ. If

J[O,t(J)]+! t()-J, then the vertex vj is fathomed. Go to Step 4.

Step 4 (Branching) If no live vertices exist, go to Step 7;

otherwise, select a live vertex vj. If I(t(J))=W, then go to Step

5; otherwise, go to Step 6.

S Assume that tfw is the exit time from I(t)=W and ti is the

next entry time of I=O or I=W. As in Step 1, we have two cases.

Case 5.1 Suppose t i is the entry time to 1:0 and tfw<t i*

Solving the following contraints, we can find the values of tfw

and t .

(t fw )[a(tfw)-29/b if G<(a-bc)/2 and ;>bh at t t (32)

c if 5>(a-bc)/2 at t:t i

X(t-) :(33)

[a(ti )-25]/b if u<(a-bc/2 and a<bh at t:ti

X~t):X( fw+)+h(t-tfw) for all te(tfw,ti) (34)

5<(a-bc)/2 and a>bh for all te(t(J),tfw)
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-W<1 [u-(a-bp)]dt<O for all t,(tft (36)
tfw t i

fbiti-W=f tfw [u - (a- b p ) ]d t  (37)

If all above constraints have one or more solutions, then we save

them as successor vertices of v. and go to Case 5.2. Otherwise,

terminate this branch and go to Case 5.2.

Case 5.2 Let ti be the entry time to I(t)=W. This case is

similar to Case 5.1, except that (33) and (37) are replaced by

(38) and (39), respectively.

k(t-)=[a(ti)-25/b if 5((a-bc)/2 and ;>bh at t=t. (38)

t.

0=1 [u-(a-bp)dt (39)
tfw

If there exists some solutions to (tfw ti) in Case 5.1 or Case

5.2, then we keep them as successor vertices of vj and go to Step

2. Otherwise, vj is fathomed and to to Step 4.

Step 6 Assume that tfo is the exit time from I(t)=O, and ti is

the next entry time to I=O or I=W, with tfo<t i -

Case 6.1 Suppose that ti is the entry time to I=O. Solving

the following constraints, we may get the values of tfO and ti .
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if 5>(a-bc)/2 at t=tfo

A(t fo) + (40)

{[a(tfo)-25]/b if U<(a-bc)/2 and 1<bh at t=tfo

c if 5>(a-bc)/2 at t=t i

= (41)

[a(t i )-25]/b if i(a-bc)/2 and 1<bh at tt i

X(t)=X(tfo+)+h(t-tfo+) for all te(tfoti) (42)

0 <j
t i  [u-(a-bp)]dt<W for all tc(tfoti) (43)

t fO

t.

Of.i [u-(a-bp)Jdt (44)
t fO

5>(a-bc)/2 or [5<(a-bc)/2 and a'bh] for all te(t( , tfo) (45)

We keep all solutions as successors of v., if any, and go to Case

6.2.

Case 6.2 Suppose that ti is the entry time to I=W. Again,

this case is similar to Case 6.1, except that we replace (41) and

(44) by (46) and (47), respectively.

X(ti )=[a(ti))-25]/b if 5<(a-bc)/2 and a>bh at tzti (46)

ti
W=1 [u-(a-bp)]dt (47)

fo
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If there exist any solutions to (tfoti) in Case 6.1 or Case 6.2

then save them and go to Step 3. Otherwise, check whether (45) is

satisfied by setting tf0=T. If yes, let I(t)=0 on [t(j ),T] be a

feasible solution and go to Step 2. If not, v is fathomed and go

to Step 4.

Step 7 (Termination) J is optimal.

To illustrate this algorithm, we will solve a simple

numerical example.

An Example

Suppose that T:1O, a(t):30+1Ot-t 2, b=1, h=1, c=10, u=10,

W=125/12 and I 0=102/12. We then have that 5<(a-bc)/2 for

tc(0,1O., a>bh for t<4.5 and a<bh for t>4.5.

Step 0 J=0

Step 1 Solving Case 1.1, we have

X(t i-)=lO+l0ti-t 2, ti,<4

k(t)=10+9ti+t-t2, for all tt

ti
W-io--4-f 0 [u-(a-bp)]dt
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which gives a solution ti:1, x(t)=18+t for t<1. Let the vertex

corresponding this case is v 1 . Next, we find that there are no

feasible solutions to Case 1.2, and go to Step 2.

Step 2 t1=1 10 and go to Step 3.

i-

Step 3 J[0,1]+J >0 so that v 1 is alive. Go to Step 4.

Step 4 There is a unique live vertex v I with I(1)=W. Go to Step

5.

Step 5 Solving (32)-(37) simultaneously, we obtain tfw=2 and

ti=7. Let v2 be the vertex corresponding to this case. Again, we

find that there are no feasible solutions to Case 5.2. Go to Step

2.

Step 2 t'2 )=T710 and go to Step 3.1

Step 3 J[0,7+J 7>0 so that v2 is still alive. Go to Step 4.

Step 4 There exists only one live vertex v2 , and I(t2 )=. Go to

Step 6.

Step 6 There are no feasible solutions to both Case 6.1 and 6.2

since 5<(a-bc)/2 and &<bh for all t>7. We know that I(t)=O on

[7,10] is a feasible solution, let v3 be the corresponding vertex

to this, and go to Step 2.
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Step 2 t( 3 )=10.i

J[o, 101=1 10 p(a-bp)-hI-culdt,

where

18+t if 0<t<1

10+l0t-t 2  if 1<Zt<2

*Ct) 12'4+t if 2<t<7

u(t):10 for all 0<t<l0

24+5.5t-O.5t 2  if 0<t<1

20+10t-t 2  if 1<t<2

p(t) :127+5.5t-O.5t 2  if 2<t<7

20+l0t-t 2  if 7<t<10

and

102/12.idt-9t2/L4+t 3/6 if O<t<1

125/12 if 1<t<2

I(t) ~49/12+7t-9t 2 /4+t3/6 if 2<t<7

0 if 7<t<10

Go to Step 3.

Step 3 J=JEO,1OJ so that v 3 is fathomed. Go to Step 4.

Step 4 There are no live vertices. Go to Step 7.
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Step 7 J=J[0,103 is the optimal solution. This shows that t=2 is

a maximal strong planning horizon and t=7 is a minimal strong

forecast horizon, see Figure 5.

30

p °

20
A 2

Strorea Planrirsg Horizri
Strai Forecast Horizoni

Figure 5. Trajectory for Example.

3. Strictly Convex Non-negative Production Cost Case

In this section, we extend Pekelman's model [7] by

considering the production and warehouse capacities. We will see

that the optimal inventory trajectories and the strong planning

and strong forecast horizons for the linear production cost and

strictly convex production cost cases are quite similar.

Suppose that monopolist faces a strictly convex non-negative

production cost f~u) instead of a linear production cost cu. Then

the monopolist will attempt to maximize the mathematical

expression

T\
l J "=0pab)h-~ d ? ( 48
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subject to (2) and (3). Here, we assume that f(u) is twice

differentiable, and f'(O)<a/b for all t.

The necessary conditions for an optimal solution to (48) are

similar to those of (1) except that Equation (6) is replaced by

the following equation

0 if +l1-02<f,(O)

u g(x+Pl-P2 )  if f'(O)<X+P 1-P2 <f'(u) (49)

if f'(5) oI-2

where

g=(f,)-1. (50)

3.1 Optimal Policies

Again, there are only three different possible cases for the

values of I(t) in this problem but the situation of optimal

policies is slightly different to the linear production case.

Case 1 O<I(t)<W. This implies Pi=p2=0. We have three

regimes la, Ib, and Ic in this case.

Regime la. x(t)<f'(O). We yield

ft I

u =0, p =max(O;(a/b+x)/2}, I<O (51)

Regime lb. f'(O)<X(t)<g'(5). We obtain
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u':g(x3<O, p*=min~a/b; (a/b+x)/2) (52)

Regime 1c. t'(5)<X(t). We get

j':ij, p zmil~a/b; (a/b+x)/2) 53

Case 2 I(t)=O and 1(t)=O. This implies P 2 =0, u =a-bp ,and

-g(APj)-a-bj~pj1/2 if x+pi<min~f'(G); a/bI

t Ea-bC.x+p 1 )/2 if f'(i5)<+pj<a/b (514)

lg(x~pl)>o i /~+,f()

Thus, we have two regimes 2a and 2b in this case.

Regime2a. ''+P 1-P2 <min{f'(u); a/b}. We have

u =g(*0 ) and p * Ca/b+*0 )/2 (55)

and *0satisfies the following equation (56) and constraint (57):

g( .0 )-a/2+b*0/2=O (56)

and *0 zx+pl(h, or

#Ox/[b2g' J)<h (7

Regime 2b. *0u+P1-P2z(a-25)/b>f'(5) and ;<bh.
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,J I

We get u =u, p (a-5)/b, 91""12=O, and

P2= (a-25-bc) /b>O (58)

Case 3 I(t)=W and I(t)=O. This implies p1=0, u*=a-bp*. We

also have two regimes 3a and 3b in tihs case.

Regime 3a. *w=X+p1-P 2 _mintf'(5); a/b} and >bh.

We obtain u :g( w), p (a/b+w )/2, (59)

and w satisfies the following constraints:

g(*w)-a2+b*w /2=0  (60)

and

i4w=a/[b+2g '(* w )]>h (61)

Regime 3b. w=x4pl- 2=(a-2u)/b>f
' (5) and >bh.

We yield u *=, p =(a-G)/b, P1=n1=n2=0, and

(62)

p 2 =(a-25-bc)/b>O

Note that Case 3 can occur only if a@>bh. That is, full

warehouse can happen only if the rate of price increase is not

less than the inventory cost.
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3.2 Theoretical Results and Planning Horizon Theorem

Using argument similar to that in Section 2 it is clear that

Theorem 1 is still the in the strictly convex production cost case

but Theorem 4 is not correct in that case. We also need a slight

modification of the arguments to get results similar to those in

Theorem2 2 and 3.

Theorem 8. If 10>0 or a/b<h, then I<O for all t.

Proof. if I0>1 then the proof is trivial. Suppose that

10<I0 and there exists an open interval (T, T+C) such that I(t)>O

on (T, T+C). Then this can occur only in Regimes lb and Ic.

Therefore, we have

g(x)-(a-bx)/2 if f'(O)<x<min(a/b; f'(G)}

g ( )>O i f a/ b< x < f '( G_

: -(a-bx)/2 if f'(5)<x<a/b

0>0 if >max~a/b; f'(5))

and

(bh-a)/2+g'()h if f'(O)<x<min{a/b; f'(5)}

(bh-a)/2 if f'(O)<x<a/b

Since f(u) is strictly convex and non-negative, we know V and
g_(f,)-1 are increasing. Hence, g' must be positive. So,

I(T €)>0 which also implies I(T)>0. This contradicts that fact

tht Io<I0.

.9J
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Theorem 9. If !/[b+2g']>h for all t, then I(t)>O almost

everywhere on [O,T].

Proof. If not, I(t)=O on some open interval (T, +c). Since

g' is positive, we have ;/b>a/[b+2g'2>h and Regimes 2a and 2b

therefore cannot happen. This leads to a contradiction.

By using a proof essentially identical to that of Theorem 7,

we can show that the same Planning Horizon Theorem which holds for

the linear cost case (Theorem 7) also holds for the convex cost

case. We restate the theorem for completeness.

Theorem 10. (Strong Planning Horizon Theorem)

Let tf be the exit time from I(t)=W and t be the next entry

time to I(t)=O. Then tf is a maximal strong planning horizon and

t is a minimal strong forecast horizon. The theorem also holds

when 0 and W are interchanged.

4. Conclusion

In this paper we have studied a general

price-production-inventory model with linear and nonlinear

production costs. We characterized the optimal trajectories and

showed that there could be strong planning and forecast horizons.

We presented a forward branch and bound algorithm which identifies

strong planning and forecast horizons, and uses them to decompose

the problem into a set of smaller problems. The algorithm is

illustrated by means of a simple example.
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It would be possible to extend the results of this paper in

several different ways. For instance, more general demand

functions could be considered. In a subsequent paper we intend to

study the model when backlogging is permitted. Also, if we change

the linear inventory cost into a strictly increasing non-negative

inventory holding cost, then our strong planning horizon theorem

is still true. The other theorems in this paper, with suitable

modifications, would also be true.

4-
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